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to cover the behavior of n identical cascaded stages.

Gain dependence on pump power and low frequency ~41

(below UHF) noise behavior are expected to be attractive.
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High-Accuracy WKB Analyses of a-Power
Graded-Core Fibers

KIMIYUKI OYAMADA, STUDENT MEMBER, IEEE, AND TAKANORI OKOSHI, MEMBER, lEEE

Abstnw—The WKB method is an effective approach to the anafysca of

propagation charaeteristica of opticaf fibers. However, conventional WKB

aoafyses can not he applied to close-to-cutoff modes because the effect of

core-cladding boundary is not considered exaetty.

Thfs paper proposes two improved WKB analyses which consider the

above effect more exactly. Both of these methk are applicable to tbe

cfose-to-crrtoff modes. The first one is superfor in accuracy (for exampl%

relative error in cutoff frequencies~10 ‘5), but applicable oofy to

quadratic proffk. The second one is applicable to generaf a-power p-

fiiea; the accuracy is poorer but tolerable for most praeticaf purpoaea.

I. INTRODUCTION

M ANY METHODS have been developed for the

analysis of propagation characteristics of optical

fibers having arbitrary refractive-index profiles. Among

these, the WKB method [1], [2] is relatively simple and

comprehensive. However, it is essentially an approximate

analysis, and usually gives large error for close-to-cutoff

modes.

A significant fact found by the conventional WKB

analyses was that the multimode dispersion was mini-

mized for a quasiquadratic (parabolic) profile [ 1]. It was

also found that the maximum delay difference between

propagating modes for such a profile was approximately

TA2/2, where T and A denote the propagation time and

the relative refractive-index difference (see (l)), respec-

tively.

However, more exact analyses such as those by

Rayleigh-Ritz method [3], finite-element method [4], and

power-series expansion method [5] reveal that the delay-

time difference between the well-confined and close-to-

cutoff modes approaches TA. This value is much greater
than the above WKB prediction: TA2/2. The principal

reason for such an error in the conventional WKB
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analyses [1], [2] is that the effect of the discontinuity in the

slope of the index profile at core-cladding boundary is not

taken into account. For the same reason, the effect of the

index valley at the core-cladding boundary, which is

claimed to be effective for reducing the multimode disper-

sion [6], cannot be analyzed by the conventional WKB

analyses. Recently, Olshansky [7] and Ikuno [8] proposed

modified WKB analyses to improve these drawbacks.

This paper proposes two WKB analyses which consider

the above effect more exactly. These are applicable either

to the close-to-cutoff modes or to the index profiles with

valley. The first method is somewhat similar to the

Olshansky’s, but the accuracy is improved. The relative

error in the cutoff frequencies of LPml modes in

quadratic-profile fibers is below 10-5 for most modes.

However, this method is difficult to apply to index pro-

files other than the quadratic one. The second method

uses an asymptotic solution different from the first, and is

applicable to general a-power profiles; however, the ac-

curacy is poorer.

II. WKB FORMULATIONS

The index profile is assumed to be expressed as

~(r) =rt, [ 1 –2Af(r)]1’2

where r denotes the radial coordinate normalized

core radius a, and f(r) is a function given as

(1)

by the

(2)

(3)

In this case, the scalar wave equation [9] can be written as

where R(r) is the function representing the field distribu-

tion
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TABLE I
SOLUTIONSOFTHE FIELD FUNCTION R(r), METHOD R Is THE
CONVENTIONALWKB METHOD (METHOD O IS OLSHANSKY’S

ANALYSIS [7], METHODSA AND B ARETHOSEPROPOSED IN THIS

PAPER. SYMBOL DENOTES “NOT CLOSE To”)

(i) O:r; rl (ii) r z rl ,(iii) rL; r;r2 (M) rzr (v) r,;r~l (@.) l~r
2

1.—

1
1 (rp) 2[sin0’J1)(*2)--

-+ [1)
1

R
(rp)-zexp(-$j) (rp)

Y ($, ) 21rpl 2COS(I*11 -;) (rp) ‘Texp (-*2j

+acOse J2)($2) ]

1

A
(rp) ‘z[sinO;’](*2) .~

< same as above ~ (rp) 2exp (-$2)

+flcose Jz)(*z) 1

1-—
(rp) 2[sin6exp(-*2) -~

o 4 same as above ~
(rp) 2

+ficos Oexp($2) ]
exp (-$2)

(ti) O~r:r (W) _O;r~l
3 (k) _l~r

1

1 (rg)-z[sin (Q-~) J’)(@2)
B

(.##Jm (h) xm(wr)

+mcos (0 -*) J2)($2) ]

V2= a2k2n~(2A): normalized frequency (5)

u2= a2(n%2- F2) (6)

m is the rotational mode number, k and P denote the

propagation constants in free space and in the fiber along

its axis, respectively.

The approximate solution for R(r) by the conventional

WKB method [2], [10] is given as

[1R(r) =(rp-1’2exp * Jpdr (7)

where

pz(r)= – {U2– Oy(r)– nJ/r2}. (8)

Fig, 1 shows a schematic drawing of the function p2(r) for

an a-power profile. As shown in this figure, p2(r) has two

“turning points” rl and r2 [2], in the vicinities of which the

approximation of (7) becomes very poor. In such regions,
better solutions are [10]

~(r) = N ‘/2()2rp It 1/3(%)> i=l,2 (9)

where

+,= ~r’p dr
r

(lo)

$2= ~“”p dr (11)
J r2

and are used for the regions r =rl or r =r2, respectively,

and IV is the vth-order modified Bessel function of the first

kind.

pz(r)

o
I

I

I

I

I

I

I

O rl
~r

rz 1

Fig. 1. A schematic drawing of function p’(r),

By using (7) and (9), the field function R(r) can be

approximated in three ways, which are tabulated as

methods R, A and O in Table I.

Method R (Reference) denotes the conventional WKB

analysis [2], which is shown for cotnparison. Method A is

the first of the two methods proposed in this paper. The

only difference between methods R and A is found in the

solutions in the region r2 < r <1, where symbol # de-
+

notes “not close to.” Method O denotes Olshansky’s anal-

ysis [7]; this is discussed in detail in the final part of

Section III.

In Table I, @l) and @2) used in method R (and also in

A and B) are functions defined as

(2mz)”2[qqz) = – ~
- ~-,,Az)* L,3(4]Y i=l,2

(12)
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where the double sign is plus for i = 1 and minus for i= 2,

and

O=fr’llw-.
J’1

(13)

In [2], which describes method R in more detail than [1],

Petermann gives the solutions near the turning points in

terms of Airy functions Ai and Bi instead of ~(l) and ??(2).

However, the identity of his solutions with those in Table

I can readily be shown.l

In method R, a single formula expresses the solution in

the region r2 $ r <1 and that -in the cladding. However,

such a WKB solution gives a good approximation for the

field function only when the following condition holds [2]:

(14)

where Q= (P)z and a prime denotes a differentiation with

respect to w = logr. The above inequality suggests that the

approximation is very poor at r= 1 where the slope of the

function p2(r) changes abruptly (see Fig. 1) and hence Q”

is very large. Thus the conventional WKB solution

(method R) gives a large error especially at frequencies

close to cutoff where the effect of the above poor ap-

proximation is enhanced. In method A, this problem is

solved by using two different solutions in regions (v) and

(vi). As described later, these two solutions can be joined

smoothly at r= 1 to obtain a proper equation. Method A

is applicable even to index profiles having an index step

or valley at r= 1.
Method B in Table I is the second method proposed in

this paper; this is based upon a somewhat different idea

proposed originally by Kurtz and Streifer [12]. In this

method, we first write the asymptotic solution in most of

the core as [12]

()77CJ5,2
~(r) = Zr, ~1— .lm((#Dl)

where

(15)

(16)

g2(r) = – { u2– v?(r)}. (17)

A schematic drawing of function g2(r) is shown in Fig. 2.

This function becomes zero at r= r~, that is, a little inside

the core-cladding boundary. Thus (15) gives a large error

near r = r~. To overcome this difficulty, we use another

approximate formula’ in this region

()9X+52 ‘/2
R(r) = ~ 1* 1/3(+2) (18)

‘As to the relation between Ai, Bi, and Z&,/3 see, for example, [1 L P.

447, equations (10.4.14) and (10,4.18)].
To derive solutions in regions (ii), (iii), and (iv) in Table I, we must

consider smooth connections between those in regions (i)–(v), when
either Ai and Bi or @l) and Y(z) are used. Such calculation is somewhat
lengthy and so far has not been described in detail anywhere. If
neeessary, refer to [13] to be published.

where

rp2= ~ ‘gdr. (19)
r3

Equation (18) is obtained by assuming 1U2– v~(r)l >>

m2/r2 in (8) and (9).

From (15) and (18), we obtain the solutions B in Table

I, where *(1) and II?(2Jare equal to those defined in (12),

and

(20)

Using method B, we can deal with general a-power

profiles (where a is not necessarily an integer) even having

an index valley or step at the core-cladding boundary.

This is because integrals in (19),(20) can be computed

analytically for such general profiles as described in the

following.

We assume the index profile as

(21)

where p expresses the depth of the index valley (when

p> 1) or height of the index step’ (when p< 1) at the

core-cladding boundary. Parameter @ defined by (20) can

be computed, from (17) exactly as

@=;(_E)’’aB(y) (22)

where B denotes a Beta function. The value of +Z at r = 1

(which is needed to compute (34) and (35) to appear later)

is given approximately as (see Appendix)

u ‘/” (a-l)z+l

()[
+2,,=1 = ~“2” ~

2(a–1) F

1— log (a–l)z+l
w (a– 1)3/2

provided that we can assume that

r~=l (24)

or

a~2. (25)

III. PROPER EQUATIONS

Now four sets of solutions for the field function R(r)

are given. The proper equations can be derived from each

set of these solutions. First, in method R, the proper

equation is derived from the condition that the asymptotic

form of the solution in region (iv) must coincide with the

solutions in regions (v) and (vi). This leads to

Coto=o (26)

which gives a quantized condition to the value of O [2].
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Fig. 2. A schematic drawing of function gz(r).

In methods A and B, we use the condition that the

logarithmic derivatives of the field solutions must be con-

tinuous at the core-cladding boundary; that is [3]

lil& g = ~im 1 dR

r+l+() R dr “
(27)

This condition follows from the fact that both R(r) and

dR(r)/dr must be continuous at r= 1. From this condi-

tion, the proper equation for method A is given as

cote=i3 (28)

where

“[7[~,/3(y2) – ~- 1/3(+2)] ‘P - [zi/3(~2) – z: l/3(y2)] 1y[ll/3(t2) + z- l/3(y2)] ‘P ‘[z[/3(~2) + z: 1/3(+2)] ,-,

(29)

(y=–1 !L+2P+; P- P,-
2 p+ 42 P- )

(30)

(31)

(32)

a prime denotes a differentiation with respect to the

argument, and suffix r denotes a differentiation with

respect to r. Similarly, the proper equation for method B

is given as

Cot(@-:T)=”
where m is the rotational mode number,

(33)

“[r[zl/3(f#Iz) – z_ l/3(q2)] – g- [1{/3(+2) – 1: l/3(@2)] 1r[zl/3(@2) + z- 1/3(%)] – g- [1[/3(+2) +‘~ l/3(*2)] ,-,

(34)

~z=uz—uz (36)

g-=r:~og (37)

(38)

and Km denotes mth-order modified Bessel function of the

second kind.

The above proper equations (26), (28), and (33) have

similar forms. The only difference between (26) and (28) is

found in the right-hand sides, For well-confined modes, +2

is very large. This makes 8 very small (29). Thus (28) can

be approximated as (26). For close-to-cutoff modes, how-

ever, 8 cannot be neglected, and (26) and (28) give much

different results. Thus the conventional WKB analysis

[1], [2] gives a large error for close-to-cutoff modes.

Olshansky’s analysis (method O in Table I) is similar to

method A. However, in region (v), he used an asymptotic

form of the solution used in method A and consequently

obtained a simpler proper equation [7]

1 P+P,-–I-3’P; +43-J 3+( P- –p+)~–2+2(1)coto=60=––
2 p +p,– –p-p; +2p-p+(p-+p’)

(39)

instead of (28). However, the above asymptotic form

generates a large error in the vicinity of the turning point

r2. Therefore, when the turning point rz approaches the

core-cladding boundary, in other words at near-cutoff

frequencies, Olshansky’s analysis gives a relatively large

error as shown in Section V.

When m= O, that is, for LPO[ modes, p2(r) = g2(r) and

the inner turning point rl disappears. Therefore, methods

R, A, and O, which assume the presence of that turning

point, cannot be applied to LPO1 modes as they stand.2

Method B is applicable also to such modes.

IV. DELAY TIME

The delay time per unit distance is given as

lg

C dk
(40)

where c denotes the velocity of light. We compute first the

delay time using method A. Making the derivatives of

both sides of (28) with respect to k, we obtain

(-(1+32) g+~g)=++;$ (41)

Hence the delay time per unit length is given as

If we start from (26), we can simply let 8 = O in the

above equations. In this case, the factor in the bracket in

(42) becomes unity. This fact suggests that this factor
gives a correction to the conventional WKB analysis [7].

In case of method B, parameters in (42) should simply be

replaced as

S-+8’ (43)

‘+(%”)
(44)

2Some corrections of the formulations might enable us to deal with the
LPO1 modes using these methods.
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Fig. 3. Normalised propagation eenstant for the quadratic profile computed by methods Aj O, and R.
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Fig. 4, Normalised delay time for the quadratic profife computed by methods Aj O, R and the
series-expansion method [5].

V. NUMERICAL CALCULATIONS

The propagation characteristics can be calculated

numerically by using the proper equations and delay-time

formulas.

In method A, the proper equation (28) can be solved

without much difficulty only for the quadratic (a= 2)

profile. It is because the integrals in (11) and (13) can

hardly be computed analytically for cases a #2 (see (8));

for such cases numerical calculation is required.

The propagation constant and delay time for the

quadratic profile obtained by method A are shown by

solid curves in Figs. 3 and 4, respectively, where ~ and t

are expressed by normalized variables defined as3

(45)

3A variable defined as b = 1 – x is also used in many papers. See, for
example [14].

Ct~.— – 1.
n,

(46)

The dotted curves and broken curves in Figs. 3 and 4

show the results of the conventional WKB analysis

(method R) and those of Olshansky’s analysis [7], respec-

tively.

The results of computation by method A show fairly

good agreement with more rigorous analyses by finite-ele-

ment and power-series expansion methods [5] shown by

dash-dotted curves; the difference can hardly be shown

on the graphs. A relatively large error is found only in the

delay-time characteristics at near-cutoff frequencies. The

relative error in the cutoff frequencies for LP~l modes is

shown Fig. 5; the error is less than 10– 5 for those modes

for which 1>4.

The propagation constant and delay time computed by

using method B are shown in Figs. 6 and 7, respectively,

for a= 2, 4, 10, and p= 1. Table II shows the normalized

frequencies giving x=0.5 and 0.9 in the dispersion char-
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Fig. 5. Error in

Method A
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expansion method(5)
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Radial mode number L

the normalized cutoff frequencies of LPm, modes for the quadratic profile computed by method A.
The rigorous values VsEM have been obtained by power-series expansion method.
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Fig. 6. Normalized propagation constant for a-power profiles computed by method B.
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Fig. 7. Normalized delay time for a-power profiles computed by method B.
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TABLE II
NORMALIZED FREQUENCIES GIVING x=0.5 AND 0.9, AND YHE

CORRESPONDING EaRORS (rN THE PARSNTHSSm) IN METHOD B

mode
‘p n-mode

-node
‘P22

x 0.9 0.5 0.9 0.5

4.2200 7.99026 10.9989 19.9999

a=2 (-0.0005) (-0.00007) (0.0002) (-0.00001)

3.57147 5.98259 9.54145 15.1050
==4

(0.0195) (0.0158) (0.0156) (0.0152)

3.02957 4.81216 8.56071 12.5471

‘=10 (-0.0072) (~o. oo86) (0.0219) (0.0205)

acteristics, and the error obtained by comparing those provided that

with more rigorous data [5]. In Figs. 6 and 7, a relatively

large error is found again in the delay-time near cutoff. In or

other parts the accuracy is practically satisfactory. The

quadratic profile (a= 2) gives the minimum error because

(23) is exact for this profile.

VI. CONCLUSION

Two improved WKB analyses of a-power fibers have [1]

been proposed. The first one is a modification of the

conventional WKB method; this can be applied also to [2]

close-to-cutoff modes, to which the conventional ones are

not applicable. The accuracy is excellent for most of the
[3]

propagating modes (see Fig. 5). However, this method can
hardly be applied to those profiles in which a #2.

The second one is applicable to general a-power pro-
[4]

files. The error is relatively large, but is tolerable in

practical applications (see Figs. 5, 6, and 7, and Table II). [5]

APPENDIX

DERIVATION OF (23)

The integrand can be approximated as

Im7=. .=+”(””’)=2
[ 2

1/2
+ 4Y-q(@)z3+.. .

6 1

[6]

[7]

[8]

(Al)
[9]

[10]
[11]

[12]

J

[

[13]

1a(a–1) =2 1/2
= U+

2
(A.2) [Iq

r3=l (A.3)

a=2. (A.4)

We can compute the integral of (A.2) analytically.
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