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to cover the behavior of n identical cascaded stages.
Gain dependence on pump power and low frequency
(below UHF) noise behavior are expected to be attractive.
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High-Accuracy WKB Analyses of o-Power
Graded-Core Fibers

KIMIYUKI OYAMADA, STUDENT MEMBER, IEEE, AND TAKANORI OKOSHI, MEMBER, IEEE

Abstract—The WKB method is an effective approach to the analyses of
propagation characteristics of optical fibers. However, conventional WKB
analyses can not be applied to close-to-cutoff modes because the effect of
core-cladding boundary is not considered exactly.

This paper proposes two improved WKB analyses which consider the
above effect more exactly. Both of these methods are applicable to the
close-to-cutoff modes. The first one is superior in accuracy (for example,
relative error in cutoff frequencies=510~%), but applicable only to
quadratic profiles. The second one is applicable to general a-power pro-
files; the accuracy is poorer but tolerable for most practical purposes.

I. INTRODUCTION

ANY METHODS have been developed for the

analysis of propagation characteristics of optical
fibers having arbitrary refractive-index profiles. Among
these, the WKB method [1],[2] is relatively simple and
comprehensive. However, it is essentially an approximate
analysis, and usually gives large error for close-to-cutoff
modes.

A significant fact found by the conventional WKB
analyses was that the multimode dispersion was mini-
mized for a quasiquadratic (parabolic) profile [1]. It was
also found that the maximum delay difference between
propagating modes for such a profile was approximately
TA?/2, where T and A denote the propagation time and
the relative refractive-index difference (see (1)), respec-
tively.

However, more exact analyses such as those by
Rayleigh—Ritz method [3], finite-element method {4], and
power-series expansion method [5] reveal that the delay-
time difference between the well-confined and close-to-
cutoff modes approaches TA. This value is much greater
than the above WKB prediction: 7A?/2. The principal
reason for such an error in the conventional WKB
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analyses [1],[2] is that the effect of the discontinuity in the
slope of the index profile at core-cladding boundary is not
taken into account. For the same reason, the effect of the
index valley at the core-cladding boundary, which is
claimed to be effective for reducing the multimode disper-
sion [6], cannot be analyzed by the conventional WKB
analyses. Recently, Olshansky [7] and Ikuno [8] proposed
modified WKB analyses to improve these drawbacks.

This paper proposes two WKB analyses which consider
the above effect more exactly. These are applicable either
to the close-to-cutoff modes or to the index profiles with
valley. The first method is somewhat similar to the
Olshansky’s, but the accuracy is improved. The relative
error in the cutoff frequencies of LP,, modes in
quadratic-profile fibers is below 107> for most modes.
However, this method is difficult to apply to index pro-
files other than the quadratic one. The second method
uses an asymptotic solution different from the first, and is
applicable to general a-power profiles; however, the ac-
curacy is poorer.

II. WKB FORMULATIONS
The index profile is assumed to be expressed as
n(r)y=n,[1-24/(r)]"* (1)

where r denotes the radial coordinate normalized by the
core radius a, and f(r) is a function given as

a 2)
A=1r% r< 1 (
fir) { 1, r>1 3)
In this case, the scalar wave equation [9] can be written as
1 d{ dR 2 2 m>)
p dr(r dr)+{u v’f(r) 2 R=0 C))

where R(r) is the function representing the field distribu-
tion
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TABLE I
SoLuTioNs oF THE FIELD FuncTION R(r), METHOD R IS THE
CONVENTIONAL WKB METHOD (METHOD O Is OLSHANSKY’S
ANALYSIS [7], METHODS A AND B ARE THOSE PROPOSED IN THIS
PApER. SYMBOL DENOTES “NOT CLOSE TO”)

(i) °§r§r1 (i) r = ]:‘1 (i) r1§r§r1 (®) r z rz (v) rzirél (vi) 1gr
BT &
1 1 1 (rp) “{sindY¥ (¥2) 1
-+ 2.0 2 i 2 .
R [rp) Zexp(=y,l(¥®) “¥ (w1 |2lxe| “costlvi]l-7) @ (xp) “exp(-vs)
+/3cos8Y (i) ]
"3 (1)
(rp) “[sinBY (y2) 1
A same as above (rp) Zexpl-¥;)
(2)
+/3cosbY {¥2))
Y
(rp) 2[sineexx.v(-wz) 1
o) same as above )
+/3cossexp (ba) ] (rp) “exp(-¥2)
(W) 0 £z X, i) ol () Lgx
T, m (1)
5 % {rg) [sxn(@--z*ﬂ)‘l’ (¢2)
(221125 (81) Ky ()
2 (2) m
rlgl” "m +/Feos (B -FM ¥ (92)]

v?=a’%n}(2A) : normalized frequency (5)
ul= az(n12k2 - ,82) (6)
m is the rotational mode number, k and B8 denote the
propagation constants in free space and in the fiber along
its axis, respectively.
The approximate solution for R(r) by the conventional
WKB method [2],[10] is given as

R()= ()" exp| = [per| ™

where

pAr)=—{w*—0¥(r)—m*/r?}. 8)
Fig. 1 shows a schematic drawing of the function p*(r) for
an a-power profile. As shown in this figure, p*(r) has two
“turning points” r; and r, [2], in the vicinities of which the
approximation of (7) becomes very poor. In such regions,
better solutions are [10]

\1/2
RO)=(F2) Lap). =12 O
where
w=["par (10)
v.= [ par (11)

and are used for the regions r=tr, or r=r,, respectively,
and I, is the yth-order modified Bessel function of the first
kind.
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-

|
!
!
I
|
|
1
1

r
1

Fig. 1. A schematic drawing of function p(r).

By using (7) and (9), the field function R(r) can be
approximated in three ways, which are tabulated as
methods R, A and O in Table I.

Method R (Reference) denotes the conventional WKB
analysis [2], which is shown for comparison. Method A is
the first of the two methods proposed in this paper. The
only difference between methods R and A is found in the
solutions in the region r, < r<1, where symbol < de-
notes “not close to.” Method O denotes Olshansky’s anal-
ysis [7]; this is discussed in detail in the final part of
Section III.

In Table I, ¥ and ¥® used in method R (and also in
A and B) are functions defined as

27z

¥O(z)= _(_3_)1/2[ —I_, ()1 5(2)],  i=12

(12)
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where the double sign is plus for i=1 and minus for i=2,
and

0= ["|p|dr. 13

J 1 (13)
In [2], which describes method R in more detail than [1],
Petermann gives the solutions near the turning points in
terms of Airy functions Ai and Bi instead of ¥ and ¥,
However, the identity of his solutions with those in Table
I can readily be shown.!

In method R, a single formula expresses the solution in
the region 7, < r<1 and that in the cladding. However,
such a WKB solution gives a good approximation for the
field function only when the following condition holds [2]:

&ul%)

where Q= (rp)? and a prime denotes a differentation with
respect to w=logr. The above inequality suggests that the
approximation is very poor at r =1 where the slope of the
function p?(r) changes abruptly (see Fig. 1) and hence Q”
is very large. Thus the conventional WKB solution
(method R) gives a large error especially at frequencies
close to cutoff where the effect of the above poor ap-
proximation is enhanced. In method A, this problem is
solved by using two different solutions in regions (v) and
(vi). As described later, these two solutions can be joined
smoothly at r=1 to obtain a proper equation. Method A
is applicable even to index profiles having an index step
or valley at r=1.

Method B in Table I is the second method proposed in
this paper; this is based upon a somewhat different idea
proposed originally by Kurtz and Streifer [12]. In this
method, we first write the asymptotic solution in most of
the core as [12]

<@

(14)

R0)=( o0t ) (00 15)

where
o= [ |slar (16)
£() = — (1= (). )

A schematic drawing of function g?(r) is shown in Fig. 2.
This function becomes zero at r=r;, that is, a little inside
the core-cladding boundary. Thus (15) gives a large error
near r=r;. To overcome this difficulty, we use another
approximate formula in this region

R(r)=(§f§)l/21ﬂ/3<¢2) (18)

!As to the relation between Ai, Bi, and 7., /3 see, for example, [11, p.
447, equations (10.4.14) and (10.4.18)].

To derive solutions in regions (ii), (iii), and (iv) in Table I, we must
consider smooth connections between those in regions (i)—(v), when
either Ai and Bi or ¥V and ¥@ are used. Such calculation is somewhat
lengthy and so far has not been described in detail anywhere. If
necessary, refer to [13] to be published.
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where
oy= rga’r. (19)
= 3

Equation (18) is obtained by assuming |u®— 0%(r)|>
m?/r? in (8) and (9).

From (15) and (18), we obtain the solutions B in Table
I, where ¥V and ¥® are equal to those defined in (12),
and

0= fo ®| glar.

Using method B, we can deal with general a-power
profiles (where a is not necessarily an integer) even having
an index valley or step at the core-cladding boundary.
This is because integrals in (19),(20) can be computed
analytically for such general profiles as described in the
following.

We assume the index profile as

= [ere 0<r<l1
) [1, 1<r

(20)

1)

where p expresses the depth of the index valley (when
p>1) or height of the index step (when p<1) at the
core-cladding boundary. Parameter ® defined by (20) can
be computed, from (17) exactly as

2 \/a
=22 B( 1 ,i)
v poz a’2
where B denotes a Beta function. The value of ¢, at r=1

(which is needed to compute (34) and (35) to appear later)
is given approximately as (see Appendix)

Vel (a—1)z+1 -1
— 172 u (a )Z a
¢2,r==1 a u( pv) l: 2(&—1) 2

22)

224z

log|(a—1)z+1

1
V2 (a—1)*/?

+V2(a—1) \/"‘;1 24z

provided that we can assume that

(23)

1/a~1

z=(pv/u)
ry=1l (24)
or

(25)

IIL

Now four sets of solutions for the field function R(r)
are given. The proper equations can be derived from each
set of these solutions. First, in method R, the proper
equation is derived from the condition that the asymptotic
form of the solution in region (iv) must coincide with the
solutions in regions (v) and (vi). This leads to

cotfd=0 (26)
which gives a quantized condition to the value of 4 [2].

ProOPER EQUATIONS
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Fig. 2. A schematic drawing of function g%().

In methods A and B, we use the condition that the
logarithmic derivatives of the field solutions must be con-
tinuous at the core-cladding boundary; that is [3]

1 dR _ 1 dR

r—1>1 oR dr ro1+0 R dr

This condition follows from the fact that both R(r) and
dR(r)/dr must be continuous at r=1. From this condi-

tion, the proper equation for method A is given as

27)

cotd=34 (28)
where
PO
V3
) Y132 = 11 5G] =P~ ;5(82) — 174 /5 ()]
M EVECO R SRV O] B VPR OOV R SRPN O3 ) —
(29)
1 Pr P B P,_
=— +2pt+ - = 30
L) (,, v, P ) G0
p*= lim p @31
r—>1x0
= L/
= im, 2 @)

a prime denotes a differentiation with respect to the
argument, and suffix r denotes a differentiation with
respect to r. Similarly, the proper equation for method B
is given as

cot(@ - 77') =5 (33)

2

where m is the rotational mode number,

8

=

73

[r[ll/s(%) I_y 561~ [ 1] ;38— 1—1/3(%)]}
=1

CL1y 5(e) + 11 j3(0)] — 27 [ 1] j3(8) + 12 5()]

(34)

R S CON R Y S
r= [ K, (w) } (5-51) e
wi=p?—u? (36)
g = lm g (37)
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dg
- 8
r—LIPlO dr (3 )

and K, denotes mth-order modified Bessel function of the
second kind.

The above proper equations (26), (28), and (33) have
similar forms. The only difference between (26) and (28) is
found in the right-hand sides. For well-confined modes, v,
is very large. This makes 8 very small (29). Thus (28) can
be approximated as (26). For close-to-cutoff modes, how-
ever, § cannot be neglected, and (26) and (28) give much
different results. Thus the conventional WKB analysis
[1},[2] gives a large error for close-to-cutoff modes.

Olshansky’s analysis (method O in Table I) is similar to
method A. However, in region (v), he used an asymptotic
form of the solution used in method A and consequently
obtained a simpler proper equation [7]

- +2p7p* -
cot0=80——lpp’ PRI AP (2T =PT)

20 P P A2 p(p ApT) ¢

gr_ =

(39)
instead of (28). However, the above asymptotic form
generates a large error in the vicinity of the turning point
r,. Therefore, when the turning point r, approaches the
core-cladding boundary, in other words at near-cutoff
frequencies, Olshansky’s analysis gives a relatively large
error as shown in Section V.

When m=0, that is, for LP,, modes, p*(r)=g?(r) and
the inner turning point r; disappears. Therefore, methods
R, A, and O, which assume the presence of that turning
point, cannot be applied to LP, modes as they stand.?
Method B is applicable also to such modes.

IV. DEerLay TiME
The delay time per unit distance is given as
(40)

where ¢ denotes the velocity of light. We compute first the
delay time using method A. Making the derivatives of
both sides of (28) with respect to &, we obtain

80 ag\_ 038 98 4B
(1+82)( B dk) Bak @
Hence the delay time per unit length is given as
_l(BO/Sk) (1+8%)+(38/3k) /(6 / 9k) (42)
30/3B )| (1+8%)+(36/08)/(00/0B) |

If we start from (26), we can simply let §=0 in the
above equations. In this case, the factor in the bracket in
(42) becomes unity. This fact suggests that this factor
gives a correction to the conventional WKB analysis [7].
In case of method B, parameters in (42) should simply be
replaced as

86’

0——)(@- %?— '77').

(43)
(44)

2Some corrections of the formulations might enable us to deal with the
LPy, modes using these methods.
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V. NuMERICAL CALCULATIONS =L (46)
n

The propagation characteristics can be calculated
numerically by using the proper equations and delay-time
formulas.

In method A, the proper equation (28) can be solved
without much difficulty only for the quadratic (a=2)
profile. It is because the integrals in (11) and (13) can
hardly be computed analytically for cases a#2 (see (8));
for such cases numerical calculation is required.

The propagation constant and delay time for the
quadratic profile obtained by method A are shown by
solid curves in Figs. 3 and 4, respectively, where 8 and ¢
are expressed by normalized variables defined as’

k2 2_p2
x= —ﬁ—ﬂ“ (45)
k*n$(24)

3A variable defined as h=1— x is also used in many papers. See, for
example [14].

The dotted curves and broken curves in Figs. 3 and 4
show the results of the conventional WKB analysis
(method R) and those of Olshansky’s analysis [7], respec-
tively.

The results of computation by method A show fairly
good agreement with more rigorous analyses by finite-ele-
ment and power-series expansion methods [5] shown by
dash-dotted curves; the difference can hardly be shown
on the graphs. A relatively large error is found only in the
delay-time characteristics at near-cutoff frequencies. The
relative error in the cutoff frequencies for LP,, modes is
shown Fig. 5; the error is less than 10~ for those modes
for which 7 >4.

The propagation constant and delay time computed by
using method B are shown in Figs. 6 and 7, respectively,
for a=2, 4, 10, and p=1. Table II shows the normalized
frequencies giving x=0.5 and 0.9 in the dispersion char-
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TABLE II
NORMALIZED FREQUENCIES GIVING x =0.5 AND 0.9, AND THE
CORRESPONDING ERRORS (IN THE PARENTHESES) IN METHOD B

mode LP 1 l-mode Lpz z—mode
x 0.9 0.5 0.9 0.5

4.2200 | 7.99026 |10.9985 | 19.9999

@ =2 |(.0.0005)](-0.00007)(0.0002) |(~0.00001)
3.57147 | 5.98259 |9.54145 | 15.1050

@ =41 (0.0195)| (0.0158) |(0.0156) |(0.0152)
3.02957 | 4.81216 |8.56071 | 12.5471

@ =10 1( 5.0072)| (l0.0086))¢0.0219) | (0.0205)

acteristics, and the error obtained by comparing those
with more rigorous data [5]. In Figs. 6 and 7, a relatively
large error is found again in the delay-time near cutoff. In
other parts the accuracy is practically satisfactory. The
quadratic profile (a =2) gives the minimum error because
(23) is exact for this profile.

VI

Two improved WKB analyses of a-power fibers have
been proposed. The first one is a modification of the
conventional WKB method; this can be applied also to
close-to-cutoff modes, to which the conventional ones are
not applicable. The accuracy is excellent for most of the
propagating modes (see Fig. 5). However, this method can
hardly be applied to those profiles in which a2.

The second one is applicable to general a-power pro-
files. The error is relatively large, but is tolerable in
practical applications (see Figs. 5, 6, and 7, and Table II).

CONCLUSION

APPENDIX
DERIVATION OF (23)

bayerm [ Vo ar

r3

=u(“—22)af0’3"“\/(1+z)“—1 dz. (Al)

pv

The integrand can be approximated as
Va+2)*-1 = [az+ _‘}_(_0_‘2;1222
+ a(a—1)(a—2) R J

1/2
;. + ]

R

(A2)

provided that
ry=1 (A.3)
or

a=2,

(A4)
We can compute the integral of (A.2) analytically.
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